Akt3 induces oxidative stress and DNA damage by activating the NADPH oxidase via phosphorylation of p47phox

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

aldosterone induces oxidative stress via nadph oxidase and downregulates the endothelial no synthesase in human endothelial cells

aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. recent studies suggest that aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. however, its exact cellular mechanisms remain obscure. this study was undertaken to examine the effect of aldo on superoxide production in human umbilical artery endothelial cells (h...

متن کامل

Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase.

The leukocyte NADPH oxidase catalyzes the reduction of oxygen to O(2)(-) at the expense of NADPH. Extensive phosphorylation of the oxidase subunit p47(PHOX) occurs during the activation of the enzyme in intact cells. p47(PHOX) carrying certain serine-to-alanine mutations fails to support NADPH oxidase activity in intact cells, suggesting that the phosphorylation of specific serines on p47(PHOX)...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2020

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.2017830117